Login / Signup

Geminivirus C4/AC4 proteins hijack cellular COAT PROTEIN COMPLEX I for chloroplast targeting and viral infections.

Wenhao ZhaoYinghua JiYijun ZhouXiaofeng Wang
Published in: Plant physiology (2024)
Geminiviruses infect numerous crops and cause extensive agricultural losses worldwide. During viral infection, geminiviral C4/AC4 proteins relocate from the plasma membrane to chloroplasts, where they inhibit the production of host defense signaling molecules. However, mechanisms whereby C4/AC4 proteins are transported to chloroplasts are unknown. We report here that tomato (Solanum lycopersicum) COAT PROTEIN COMPLEX I (COPI) components play a critical role in redistributing Tomato yellow leaf curl virus C4 protein to chloroplasts via an interaction between the C4 and β subunits of COPI. Coexpression of both proteins promotes the enrichment of C4 in chloroplasts that is blocked by a COPI inhibitor. Overexpressing or downregulating gene expression of COPI components promotes or inhibits the viral infection, respectively, suggesting a proviral role of COPI components. COPI components play similar roles in C4/AC4 transport and infections of two other geminiviruses: Beet curly top virus and East African cassava mosaic virus. Our results reveal an unconventional role of COPI components in protein trafficking to chloroplasts during geminivirus infection and suggest a broad-spectrum antiviral strategy in controlling geminivirus infections in plants.
Keyphrases
  • gene expression
  • protein protein
  • amino acid
  • binding protein
  • sars cov
  • dna methylation
  • risk assessment
  • heavy metals
  • small molecule
  • genome wide