Non-destructive environmental safety assessment of threatened and endangered plants in weed biological control.
Ikju ParkMark SchwarzländerSanford D EigenbrodeBradley L HarmonHariet L HinzUrs SchaffnerPublished in: PeerJ (2024)
Assessing the risk of nontarget attack (NTA) for federally listed threatened and endangered (T&E) plant species confamilial to invasive plants targeted for classical biological control, is one of the most important objectives of pre-release environmental safety assessments in the United States. However, evaluating potential NTA on T&E species is often complicated by restrictive agency requirements for obtaining propagules, or the ability to propagate plants and rear agents to the appropriate phenostages synchronously for testing, or both. Here, we assessed whether plant cues associated with a host recognition can be used for testing the attractiveness of four T&E and one rare single population plant species non-destructively for a candidate biocontrol agent. We used the seed-feeding weevil, Mogulones borraginis , a candidate for the biological control of the invasive plant, Cynoglossum officinale (Boraginaceae) as the study system. We collected olfactory and visual cues in the form of flowering sprigs from T&E plant species confamilial to the invasive plant in a non-destructive manner and used them to measure behavioral responses and searching time of weevils. Female weevils preferred C. officinale to all tested plant species in dual-choice bioassays using either olfactory or visual cues in a modified y-tube device. Furthermore, female weevils were repelled by the combined olfactory and visual cues from all tested T&E plant species in a dual-choice test against controls ( e.g ., purified air in an empty arm), indicating that it would be extremely unlikely for the weevil to attack any of these species upon release in the United States. Principal component analysis based on 61 volatile organic compounds effectively separated the five confamilial plant species and C. officinale , corroborating the results of behavioral bioassays. We conclude that studies on pre-alighting host selection behavior and the underlying physiological mechanisms of how organisms select host plants they exploit can aid in environmental safety testing of weed biological control agents.