Login / Signup

RZZ-Spindly and CENP-E form an integrated platform to recruit dynein to the kinetochore corona.

Verena CmentowskiGiuseppe CiossaniEnnio A d'AmicoSabine WohlgemuthMikito OwaBrian DynlachtAndrea Musacchio
Published in: The EMBO journal (2023)
Chromosome biorientation on the mitotic spindle is prerequisite to errorless genome inheritance. CENP-E (kinesin-7) and dynein-dynactin (DD), microtubule motors with opposite polarity, promote biorientation from the kinetochore corona, a polymeric structure whose assembly requires MPS1 kinase. The corona's building block consists of ROD, Zwilch, ZW10, and the DD adaptor Spindly (RZZS). How CENP-E and DD are scaffolded and mutually coordinated in the corona remains unclear. Here, we show that when corona assembly is prevented through MPS1 inhibition, CENP-E is absolutely required to retain RZZS at kinetochores. An RZZS phosphomimetic mutant bypasses this requirement, demonstrating the existence of a second receptor for polymeric RZZS. With active MPS1, CENP-E is dispensable for corona expansion, but strictly required for physiological kinetochore accumulation of DD. Thus, we identify the corona as an integrated scaffold where CENP-E kinesin controls DD kinetochore loading for coordinated bidirectional transport of chromosome cargo.
Keyphrases
  • drug delivery
  • cell cycle
  • drug release
  • high throughput
  • dna methylation
  • tyrosine kinase
  • single cell