Perinuclear mitochondrial clustering, increased ROS levels, and HIF1 are required for the activation of HSF1 by heat stress.
Saloni AgarwalSubramaniam GaneshPublished in: Journal of cell science (2020)
The heat shock response (HSR) is a conserved cellular defensive response against stresses such as temperature, oxidative stress and heavy metals. A significant group of players in the HSR is the set of molecular chaperones known as heat shock proteins (HSPs), which assist in the refolding of unfolded proteins and prevent the accumulation of damaged proteins. HSP genes are activated by the HSF1 transcription factor, a master regulator of the HSR pathway. A variety of stressors activate HSF1, but the key molecular players and the processes that directly contribute to HSF1 activation remain unclear. In this study, we show that heat shock induces perinuclear clustering of mitochondria in mammalian cells, and this clustering is essential for activation of the HSR. We also show that this perinuclear clustering of mitochondria results in increased levels of reactive oxygen species in the nucleus, leading to the activation of hypoxia-inducible factor-1α (HIF-1α). To conclude, we provide evidence to suggest that HIF-1α is one of the crucial regulators of HSF1 and that HIF-1α is essential for activation of the HSR during heat shock.