Login / Signup

An End-to-End CRSwNP Prediction with Multichannel ResNet on Computed Tomography.

Shixin LaiWeipiao KangYaowen ChenJisheng ZouSiqi WangXuan ZhangXiaolei ZhangYu Lin
Published in: International journal of biomedical imaging (2024)
Chronic rhinosinusitis (CRS) is a global disease characterized by poor treatment outcomes and high recurrence rates, significantly affecting patients' quality of life. Due to its complex pathophysiology and diverse clinical presentations, CRS is categorized into various subtypes to facilitate more precise diagnosis, treatment, and prognosis prediction. Among these, CRS with nasal polyps (CRSwNP) is further divided into eosinophilic CRSwNP (eCRSwNP) and noneosinophilic CRSwNP (non-eCRSwNP). However, there is a lack of precise predictive diagnostic and treatment methods, making research into accurate diagnostic techniques for CRSwNP endotypes crucial for achieving precision medicine in CRSwNP. This paper proposes a method using multiangle sinus computed tomography (CT) images combined with artificial intelligence (AI) to predict CRSwNP endotypes, distinguishing between patients with eCRSwNP and non-eCRSwNP. The considered dataset comprises 22,265 CT images from 192 CRSwNP patients, including 13,203 images from non-eCRSwNP patients and 9,062 images from eCRSwNP patients. Test results from the network model demonstrate that multiangle images provide more useful information for the network, achieving an accuracy of 98.43%, precision of 98.1%, recall of 98.1%, specificity of 98.7%, and an AUC value of 0.984. Compared to the limited learning capacity of single-channel neural networks, our proposed multichannel feature adaptive fusion model captures multiscale spatial features, enhancing the model's focus on crucial sinus information within the CT images to maximize detection accuracy. This deep learning-based diagnostic model for CRSwNP endotypes offers excellent classification performance, providing a noninvasive method for accurately predicting CRSwNP endotypes before treatment and paving the way for precision medicine in the new era of CRSwNP.
Keyphrases