Login / Signup

Mechanistic Study of the N-Quaternized Pyridoxal-Catalyzed Biomimetic Asymmetric Mannich Reaction: Insights into the Origins of Enantioselectivity and Diastereoselectivity.

Xianlu CuiQianqian LiLei YaoYanshun MaLixiong ZhangChuanbao ZhangLi-Li Zhao
Published in: The Journal of organic chemistry (2021)
Density functional theory calculations have been performed to gain insights into the catalytic mechanism of the N-quaternized pyridoxal (i.e., 1a)-mediated biomimetic asymmetric Mannich reaction of tert-butyl glycinate 3 with N-diphenylphosphinyl imine 2a to give the diamino acid ester 4a in high yield with excellent enantiomeric and diastereomeric selectivity (Science 2018, 360, 1438). The study reveals that the whole catalysis can be characterized via three stages: (i) the catalyst 1a reacts with the tert-butyl glycinate 3 to generate the active carbanion complex IM3. (ii) IM3 then reacts with the N-diphenylphosphinyl imine 2a giving the imine intermediate IM8. (iii) IM8 undergoes hydrolysis to give the final product anti-4a and regenerate the catalyst 1a for the next catalytic cycle. Each stage is kinetically and thermodynamically feasible for experimental realization. The hydrolysis step in the stage III is predicted to be the rate-determining step during the whole catalytic cycle. Furthermore, the origins of the enantioselectivity and diastereoselectivity for the target reaction, as well as the deactivation of the catalyst 1b, are also discussed.
Keyphrases
  • density functional theory
  • room temperature
  • molecular dynamics
  • ionic liquid
  • highly efficient
  • reduced graphene oxide
  • public health
  • metal organic framework
  • crystal structure
  • mass spectrometry