Login / Signup

Equilibrium and Kinetic Study of Lead and Copper Ion Adsorption on Chitosan-Grafted-Polyacrylic Acid Synthesized by Surface Initiated Atomic Transfer Polymerization.

Carlos David Grande-TovarWilliam VallejoFabio Zuluaga
Published in: Molecules (Basel, Switzerland) (2018)
In this work, we synthesized chitosan grafted-polyacrylic acid (CS-g-PA) through surface-initiated atom transfer radical polymerization (SI-ATRP). We also studied the adsorption process of copper and lead ions onto the CS-g-PA surface. Adsorption equilibrium studies indicated that pH 4.0 was the best pH for the adsorption process and the maximum adsorption capacity over CS-g-PA for Pb2+ ions was 98 mg·g-1 and for Cu2+ it was 164 mg·g-1, while for chitosan alone (CS), the Pb2+ adsorption capacity was only 14.8 mg·g-1 and for Cu2+ it was 140 mg·g-1. Furthermore, the adsorption studies indicated that Langmuir model describes all the experimental data and besides, pseudo-second-order model was suitable to describe kinetic results for the adsorption process, demonstrating a larger kinetic constant of the process was larger for Pb2+ than Cu2+. Compared to other adsorbents reported, CS-g-PA had comparable or even superior adsorbent capacity and besides, all these results suggest that the new CS-g-PA polymers had potential as an adsorbent for hazardous and toxic metal ions produced by different industries.
Keyphrases
  • aqueous solution
  • drug delivery
  • risk assessment
  • molecular dynamics
  • mass spectrometry
  • electronic health record
  • room temperature
  • climate change
  • human health
  • high resolution
  • liquid chromatography