Login / Signup

Wear Properties of Conventional and High-Translucent Zirconia-Based Materials.

Francesco De AngelisMatteo BuonvivereEdoardo SorrentinoGiuseppe Daniele RondoniCamillo D'Arcangelo
Published in: Materials (Basel, Switzerland) (2022)
This study investigated the two-body wear resistance of a first generation 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP), a second generation 3Y-TZP, a third generation 4 mol% yttria partially stabilized zirconia (4Y-PSZ), a 5 mol% yttria partially stabilized zirconia (5Y-PSZ), and a type III gold alloy (Aurocast 8), performed using opposing antagonistic cusps made out of the same material. Eight cylindrical specimens were prepared for each material (n = 8) for a total of forty specimens (N = 40). Conical cusps were fabricated for each material. Each cylinder-cusp pair was arranged inside a two-axis chewing simulator over up to 360,000 loading cycles. The wear resistance was analyzed by measuring the vertical substance loss (mm) and the volume loss (mm 3 ). The antagonist wear (mm) was recorded before and after the wear test to evaluate the linear difference. Statistical analysis was performed using one-way analysis of variance (ANOVA); multiple comparisons were performed according to Tukey's method. No statistically significant differences ( p > 0.05) among the first generation 3Y-TZP, second generation 3Y-TZP, and 4Y-PSZ wear were found. 5Y-PSZ showed statistically significant higher wear compared to other the zirconias. Aurocast 8 displayed the highest values in terms of vertical wear, antagonist cusp wear, and volumetric loss. Although still not statistically comparable, the wear behavior of the latest 5Y-PSZ was the closest to the widely recognized gold standard represented by the type III gold alloy.
Keyphrases
  • type iii
  • mass spectrometry