Login / Signup

QTL for horticulturally important traits associated with pleiotropic andromonoecy and carpel number loci, and a paracentric inversion in cucumber.

Yupeng PanChanglong WenYonghua HanYuhui WangYuhong LiSen LiXiaomao ChengYiqun Weng
Published in: TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik (2020)
The legendary cucumber inbred line WI2757 possesses a rare combination of resistances against nine pathogens, which is an important germplasm for cucumber breeding. However, WI2757 flowers late and does not perform well under field conditions. The genetic basis for horticulturally important traits other than disease resistances in WI2757 is largely unknown. In this study, we conducted QTL mapping using F2 and recombinant inbred line (RIL) populations from the WI2757 × True Lemon cross that were segregating for multiple traits. Phenotypic data were collected in replicated field trials across multiple years for seven traits including fruit carpel number (CN) and sex expression. A high-density SNP-based genetic map was developed with genotyping by sequencing of the RIL population, which revealed a region on chromosome 1 with strong recombination suppression. The reduced recombination in this region was due to a ~ 10-Mbp paracentric inversion in WI2757 that was confirmed with additional segregation and cytological (FISH) analyses. Thirty-six QTL were detected for flowering time, fruit length (FL), fruit diameter (FD), fruit shape (LD), fruit number (FN), CN, and powdery mildew resistance. Five moderate- or major-effect QTL for FL, FD, LD, and FN inside the inversion are likely the pleiotropic effects of the andromonoecy (m), or the cn locus. The major-effect flowering time QTL ft1.1 was also mapped inside the inversion, which seems to be different from the previously assigned delayed flowering in WI2757. Implications of these findings on the use of WI2757 in cucumber breeding are discussed.
Keyphrases