Login / Signup

Defect-Density-Controlled Phase-Change Phenomena.

Muhammad Jahidul HoqueXiao YanHaoyun QiuYue FengJingcheng MaJiaqi LiXuzhi DuMajid LinjawiSakshi AgarwalaNenad Miljkovic
Published in: ACS applied materials & interfaces (2023)
Juxtaposing hydrophilicity and hydrophobicity on the same surface, known as hybrid surface engineering, can enhance phase-change heat transfer. However, controlling hydrophilicity on hybrid surfaces in a scalable fashion is a challenge, limiting their application. Here, using widely available metal meshes with variable dimensions and by controlling the patterning pressure, we scalably fabricate hybrid surfaces having spot and gridlike patterns using stamping. Using fog harvesting in a controlled chamber, we show that optimized hybrid surfaces have a ∼37% higher fog harvesting rate when compared to homogeneous superhydrophobic surfaces. Furthermore, condensation frosting experiments reveal that, on grid-patterned hybrid surfaces, frost propagates at ∼160% higher velocity and provides ∼20% less frost coverage when compared to homogeneous superhydrophobic surfaces. During defrost, our hybrid surfaces retain more water when compared to superhydrophobic surfaces due to the presence of hydrophilic patterns and melt water pinning. We adapt our fabrication technique to roll-to-roll patterning, demonstrating wettability contrast on round metallic geometries via atmospheric water vapor condensation. This work provides guidelines for the rapid, substrate-independent, and scalable fabrication of hybrid wettability surfaces for a wide variety of applications.
Keyphrases