Login / Signup

Coordinated regulation of nitrogen fixation and molybdate transport by molybdenum.

Lisa DemtröderFranz NarberhausBernd Masepohl
Published in: Molecular microbiology (2018)
Biological nitrogen fixation, the reduction of chemically inert dinitrogen to bioavailable ammonia, is a central process in the global nitrogen cycle highly relevant for life on earth. N2 reduction to NH3 is catalyzed by nitrogenases exclusively synthesized by diazotrophic prokaryotes. All diazotrophs have a molybdenum nitrogenase containing the unique iron-molybdenum cofactor FeMoco. In addition, some diazotrophs encode one or two alternative Mo-free nitrogenases that are less efficient at reducing N2 than Mo-nitrogenase. To permit biogenesis of Mo-nitrogenase and other molybdoenzymes when Mo is scarce, bacteria synthesize the high-affinity molybdate transporter ModABC. Generally, Mo supports expression of Mo-nitrogenase genes, while it represses production of Mo-free nitrogenases and ModABC. Since all three nitrogenases and ModABC can reach very high levels at suitable Mo concentrations, tight Mo-mediated control saves considerable resources and energy. This review outlines the similarities and differences in Mo-responsive regulation of nitrogen fixation and molybdate transport in diverse diazotrophs.
Keyphrases
  • gene expression
  • cancer therapy
  • dna methylation
  • drug delivery
  • long non coding rna