Analysis of Validation Performance of a Machine Learning Classifier in Interstitial Lung Disease Cases Without Definite or Probable Usual Interstitial Pneumonia Pattern on CT Using Clinical and Pathology-Supported Diagnostic Labels.
Marcello ChangJoshua J ReicherAngad KalraMichael MuellyYousef AhmadPublished in: Journal of imaging informatics in medicine (2024)
We previously validated Fibresolve, a machine learning classifier system that non-invasively predicts idiopathic pulmonary fibrosis (IPF) diagnosis. The system incorporates an automated deep learning algorithm that analyzes chest computed tomography (CT) imaging to assess for features associated with idiopathic pulmonary fibrosis. Here, we assess performance in assessment of patterns beyond those that are characteristic features of usual interstitial pneumonia (UIP) pattern. The machine learning classifier was previously developed and validated using standard training, validation, and test sets, with clinical plus pathologically determined ground truth. The multi-site 295-patient validation dataset was used for focused subgroup analysis in this investigation to evaluate the classifier's performance range in cases with and without radiologic UIP and probable UIP designations. Radiologic assessment of specific features for UIP including the presence and distribution of reticulation, ground glass, bronchiectasis, and honeycombing was used for assignment of radiologic pattern. Output from the classifier was assessed within various UIP subgroups. The machine learning classifier was able to classify cases not meeting the criteria for UIP or probable UIP as IPF with estimated sensitivity of 56-65% and estimated specificity of 92-94%. Example cases demonstrated non-basilar-predominant as well as ground glass patterns that were indeterminate for UIP by subjective imaging criteria but for which the classifier system was able to correctly identify the case as IPF as confirmed by multidisciplinary discussion generally inclusive of histopathology. The machine learning classifier Fibresolve may be helpful in the diagnosis of IPF in cases without radiological UIP and probable UIP patterns.
Keyphrases
- idiopathic pulmonary fibrosis
- machine learning
- interstitial lung disease
- deep learning
- computed tomography
- artificial intelligence
- big data
- high resolution
- dual energy
- systemic sclerosis
- clinical trial
- mass spectrometry
- convolutional neural network
- quality improvement
- study protocol
- fine needle aspiration
- data analysis
- extracorporeal membrane oxygenation