Login / Signup

The combined treatment of fiber post and root canal by the Er:YAG laser enhances the bond strength of composite reconstruction.

Zhennan DengZhuo HuangLinchao PingWenjia HuKendrick Hii Ru YieChongxing LiuHualin ZhangJinsong Liu
Published in: Lasers in medical science (2023)
Fiber post bonding failure remains an issue during crown restoration procedures. This experiment examines the bonding effect of combined Er:YAG laser treatment on both root canal and fiber post. Sixty extracted mandibular first premolars were randomly selected and divided into 6 groups (n = 10 per group): G1 (control group): root canal with 2.5% NaClO treatment, no treatment of fiber post; G2: root canal with 2.5% NaClO treatment and fiber post with airborne-particle abrasion; G3: root canal with Er:YAG laser treatment and fiber post with airborne-particle abrasion; G4: root canal with Er:YAG laser treatment, no treatment of fiber post; G5: root canal with 2.5% NaClO treatment, fiber post with Er:YAG laser irradiation; G6: combined Er:YAG laser irradiation of both root canal and fiber post. An Er:YAG laser with a wavelength of 2940 nm was used to treat the fiber post (4.5 W, 450 mJ, 10 Hz for 60 s at 100-μs pulse duration with 100% water cooling) and the root canal (1.5 W, 150 mJ, 10 Hz for 60 s at 100-μs pulse duration with 100% water cooling). When the root canal was treated with the laser, the fiber tip was inserted into the root canal to make a spiral reciprocating motion. Bond strength was analyzed by a micro push-out test. Data were analyzed using both the Tukey test and two-way ANOVA (α = 0.05). Failure modes were observed and counted through a stereo microscope. The root canal and fiber post surface analysis was performed using SEM. The bond strength of G3 and G6 were significantly enhanced compared to those of the other groups (p < 0.05). The SEM analysis showed that the smear layers of groups with root canals subjected to Er:YAG laser irradiation were significantly reduced compared to those of the control group (G1). In groups with fiber posts treated with Er:YAG laser irradiation, the surfaces of the fiber posts exhibited greater surface roughness and a certain degree of epoxy matrix removal. Through the combined Er:YAG laser irradiation of both root canal and fiber post, the bond strength between them was significantly enhanced, which was superior to the individual treatment of either fiber posts or root canal.
Keyphrases
  • escherichia coli
  • mass spectrometry
  • combination therapy
  • radiation induced
  • machine learning