Login / Signup

Balancing the effect of pretreatment severity on hemicellulose extraction and pulping performance during auto-hydrolysis prior to kraft pulping of acacia wood.

Haiqiang ShiMiaofang ZhouWenchao JiaNa LiMeihong Niu
Published in: Biotechnology progress (2019)
When using a combination of pre-extraction and chemical pulping, a high yield of sugar recovery and minimal negative effect on the subsequent pulping step are expected. In this work, the P factor was utilized to investigate the effect of auto-hydrolysis severity on sugar recovery, removal of the main component, and impact on the kraft pulping of acacia wood chips. Using a P factor of 235, 84.34% of the polysaccharides in 14.05 g L-1 of dissolved sugars could be obtained. In addition, the soluble sugars were easily separated with a recovery yield of 3.54 g ·L-1 and Mw of 4,690 g mol-1 by direct precipitation using organic solvents. However, a maximum of 22.14 g L-1 of dissolved sugars was obtained with approximately 72.53% polysaccharides and Mw of 2,198 g mol-1 for a P factor of 601. Moreover, nearly 50% of the degraded carbohydrates remained in the auto-hydrolyzed wood chips. The decrease in the mass of pentosan, holocellulose, and klason lignin was 62, 30, and 8.76%, respectively. With intensifying severity, the screened yield and viscosity of pulps decreased markedly, whileas the Kappa number increased. No significant differences were observed in the morphology of the resultant fibers. Moreover, there was a decrease in the physical strength of the pulps due to the loss of the intrinsic strength of the pulp fibers, which in turn resulted from the cellulose damage. The combustion performance of the resultant pulping black liquor is improved due to the higher lignin content.
Keyphrases
  • ionic liquid
  • organic matter
  • oxidative stress
  • physical activity
  • water soluble
  • mental health
  • nuclear factor
  • anaerobic digestion
  • sensitive detection
  • quantum dots
  • living cells
  • municipal solid waste