Login / Signup

Core regulon of the global anaerobic regulator Anr targets central metabolism functions in Pseudomonas species.

Paula M TribelliAdela M LujanAgustín PardoJosé G IbarraDarío Fernández Do PortoAndrea SmaniaNancy I López
Published in: Scientific reports (2019)
A comparative genome analysis of the global anaerobic regulator Anr regulon in five species of Pseudomonas with different life style was performed. Expression of this regulator was detected in all analyzed Pseudomonas. The predicted Anr regulon (pan-regulon) consisted of 253 genes. However, only 11 Anr-boxes located upstream of qor/hemF, hemN, cioA/PA3931, azu, rpsL, gltP, orthologous to PA2867, cspD, tyrZ, slyD and oprG, were common to all species. Whole genome in silico prediction of metabolic pathways identified genes belonging to heme biosynthesis, cytochromes and Entner-Doudoroff pathway as members of Anr regulon in all strains. Extending genome analysis to 28 Pseudomonas spp. spanning all phylogenetic groups showed Anr-boxes conservation in genes related to these functions. When present, genes related to anaerobic metabolism were predicted to hold Anr-boxes. Focused on the genomes of eight P. aeruginosa isolates of diverse origins, we observed a conserved regulon, sharing nearly 80% of the genes, indicating its key role in this opportunistic pathogen. The results suggest that the core Anr regulon comprises genes involved in central metabolism and aerobic electron transport chain, whereas those genes related to anaerobic metabolism and other functions constitute the accessory Anr-regulon, thereby differentially contributing to the ecological fitness of each Pseudomonas species.
Keyphrases