Thyroid Hormone Receptor Is Essential for Larval Epithelial Apoptosis and Adult Epithelial Stem Cell Development but Not Adult Intestinal Morphogenesis during Xenopus tropicalis Metamorphosis.
Yuki ShibataYuta TanizakiHongen ZhangHangnoh LeeMary DassoYun-Bo ShiPublished in: Cells (2021)
Vertebrate postembryonic development is regulated by thyroid hormone (T3). Of particular interest is anuran metamorphosis, which offers several unique advantages for studying the role of T3 and its two nuclear receptor genes, TRα and TRβ, during postembryonic development. We have recently generated TR double knockout (TRDKO) Xenopus tropicalis animals and reported that TR is essential for the completion of metamorphosis. Furthermore, TRDKO tadpoles are stalled at the climax of metamorphosis before eventual death. Here we show that TRDKO intestine lacked larval epithelial cell death and adult stem cell formation/proliferation during natural metamorphosis. Interestingly, TRDKO tadpole intestine had premature formation of adult-like epithelial folds and muscle development. In addition, T3 treatment of premetamorphic TRDKO tadpoles failed to induce any metamorphic changes in the intestine. Furthermore, RNA-seq analysis revealed that TRDKO altered the expression of many genes in biological pathways such as Wnt signaling and the cell cycle that likely underlay the inhibition of larval epithelial cell death and adult stem cell development caused by removing both TR genes. Our data suggest that liganded TR is required for larval epithelial cell degeneration and adult stem cell formation, whereas unliganded TR prevents precocious adult tissue morphogenesis such as smooth-muscle development and epithelial folding.
Keyphrases
- stem cells
- cell death
- cell cycle
- rna seq
- smooth muscle
- single cell
- genome wide
- childhood cancer
- gene expression
- cell proliferation
- oxidative stress
- endoplasmic reticulum stress
- dna methylation
- skeletal muscle
- electronic health record
- mouse model
- transcription factor
- cell therapy
- combination therapy
- smoking cessation
- data analysis
- drosophila melanogaster