Login / Signup

Cryogenic superresolution correlative light and electron microscopy on the frontier of subcellular imaging.

Buyun TianXiaojun XuYanhong XueWei JiTao Xu
Published in: Biophysical reviews (2021)
Electron microscopy (EM) reveals cellular ultrastructure at high definition but faces the challenges of identification of specific subcellular structures and localization of specific macromolecules, whereas fluorescence microscopy (FM) can label and localize specific molecules in cells. Correlative light and electron microscopy (CLEM) combines the advantages of both microscopic techniques. Imaging vitreous hydrated samples at cryogenic temperatures using CLEM enables observations of cellular components of interest and their cellular context in a near-native state. This cryo-CLEM approach is further strengthened by incorporation of superresolution fluorescence microscopy, which can precisely pinpoint targets on electron micrographs. Cryogenic superresolution correlative light and electron microscopy (csCLEM) is an emerging and promising imaging technique that is expected to unveil its full power in ultrastructural studies. The present review describes the logic and principles behind this technique, how the method is implemented, the prospects, and the challenges.
Keyphrases