Login / Signup

Yb3+, Er3+ Codoped Cerium Oxide Upconversion Nanoparticles Enhanced the Enzymelike Catalytic Activity and Antioxidative Activity for Parkinson's Disease Treatment.

Yuemei LiYongmei LiHaoming WangRiyue Liu
Published in: ACS applied materials & interfaces (2021)
Oxidative stress plays an important role in Parkinson's disease (PD) and is considered a therapeutic target for PD. However, most therapeutic antioxidants show limitations due to their low reactive oxygen species (ROS) catalytic properties and low crossing of blood-brain barrier. Herein, the antioxidative activity of Yb3+ and Er3+ double-doped CeO2-x (Yb/Er/CeO2-x) upconversion nanoparticles (UCNPs) is obtained for PD treatment. Doping of Yb3+ and Er3+ ions increases oxygen vacancies, which leads to higher enzymelike catalytic activities compared to CeO2-x nanoparticles alone. Tyrosine hydroxylase protein and glial fibrillary acidic protein expression in substantia nigra and striatum as well as the open-field activity test indicates that Yb/Er/CeO2-x is effective for treatment of PD. The activities of glutathione peroxidase and total antioxidant capacity increase and the production of ROS decreases with Yb/Er/CeO2-x UCNP treatment compared with MPTP-induced injury. This indicates that the mechanism of PD treatment is to catalyze ROS products. There have been no reports to date on the usage of Yb/Er/CeO2-x as an antioxidant for PD treatment. Yb/Er/CeO2-x UCNPs cross the blood-brain barrier and exhibit biocompatibility and antioxidant catalytic properties, which decrease the ROS and effectively help in treating PD.
Keyphrases