DNA Encountering Terbium(III): A Smart "Chemical Nose/Tongue" for Large-Scale Time-Gated Luminescent and Lifetime-Based Sensing.
Shi-Fan XueZi-Han ChenXin-Yue HanZi-Yang LinQi-Xian WangMin ZhangGuoyue ShiPublished in: Analytical chemistry (2018)
Recent years have witnessed the rapid development of pattern-based sensors due to their potential to detect and differentiate a wealth of analytes with only few probes. However, no one has found or used the combination of DNA and terbium(III) (Tb) as a pattern recognition system for large-scale mix-and-measure assays. Here we report for the first time that DNA-sensitized Tb (DNA/Tb), as a label-free and versatile "chemical nose/tongue", can be employed for wide-scale time-gated luminescent (TGL) monitoring of metal ions covering nearly the entire periodic table in a cost-effective fashion. A series of guanine/thymine (G/T)-rich DNA ligands was screened to sensitize the luminescence of Tb (referring to the antenna effect) as smart pattern responders to metal ions in solution, and metal ion-DNA interactions can differentially alter the antenna effect of DNA toward Tb as pattern signals. Our results show that as few as 3 DNA/Tb label-free sensors could successfully discriminate 49 analytes, including alkali-metal ions, alkaline-earth-metal ions, transition/post-transition metal ions, and lanthanide ions. A blind test with 49 metals further confirmed the discriminating power of DNA/Tb sensors. Moreover, the lifetime-based pattern recognition application using DNA/Tb sensors was also demonstrated. This DNA/Tb pattern recognition strategy could be extended to construct a series of "chemical noses/tongues" for monitoring various biochemical species by using different responsive DNA ligands, thus promising a versatile and powerful tool for a sensing application and investigation of DNA-involving molecular interactions.