Discovery of Potent PROTACs Targeting EGFR Mutants through the Optimization of Covalent EGFR Ligands.
Hong-Yi ZhaoHai-Peng WangYu-Ze MaoHao ZhangMinhang XinXiao-Xiao XiHao LeiShuai MaoDong-Hui LiSan-Qi ZhangPublished in: Journal of medicinal chemistry (2022)
Drug resistance caused by epidermal growth factor receptor (EGFR) mutation has largely limited the clinical use of EGFR tyrosine kinase inhibitors (EGFR-TKIs) for the treatment of non-small-cell lung cancer (NSCLC). Herein, to overcome the intractable problem of drug resistance, proteolysis targeting chimeras (PROTACs) targeting EGFR mutants were developed by optimizing covalent EGFR ligands. Covalent or reversible covalent pyrimidine- or purine-containing PROTACs were designed, synthesized, and evaluated. As a consequence, covalent PROTAC CP17 , with a novel purine-containing EGFR ligand, was discovered as a highly potent degrader against EGFR L858R/T790M and EGFR del19 , reaching the lowest DC 50 values among all reported EGFR-targeting PROTACs. Furthermore, CP17 exhibited excellent cellular activity against the H1975 and HCC827 cell lines with high selectivity. Mechanism investigation indicated that the lysosome was involved in the degradation process. Importantly, the covalent binding strategy was proven to be an effective approach for the design of PROTACs targeting EGFR L858R/T790M , which laid the practical foundation for further development of potent EGFR-targeting PROTACs.