Stabilizing a three-center single-electron metal-metal bond in a fullerene cage.
Fei JinJinpeng XinRunnan GuanXiao-Ming XieMuqing ChenQianyan ZhangAlexey A PopovSu-Yuan XieShangfeng YangPublished in: Chemical science (2021)
Trimetallic carbide clusterfullerenes (TCCFs) encapsulating a quinary M3C2 cluster represent a special family of endohedral fullerenes with an open-shell electronic configuration. Herein, a novel TCCF based on a medium-sized rare earth metal, dysprosium (Dy), is synthesized for the first time. The molecular structure of Dy3C2@I h(7)-C80 determined by single crystal X-ray diffraction shows that the encapsulated Dy3C2 cluster adopts a bat ray configuration, in which the acetylide unit C2 is elevated above the Dy3 plane by ∼1.66 Å, while Dy-Dy distances are ∼3.4 Å. DFT computational analysis of the electronic structure reveals that the endohedral cluster has an unusual formal charge distribution of (Dy3)8+(C2)2-@C80 6- and features an unprecedented three-center single-electron Dy-Dy-Dy bond, which has never been reported for lanthanide compounds. Moreover, this electronic structure is different from that of the analogous Sc3C2@I h(7)-C80 with a (Sc3)9+(C2)3-@C80 6- charge distribution and no metal-metal bonding.