Login / Signup

MetaSEM: Gene Regulatory Network Inference from Single-Cell RNA Data by Meta-Learning.

Yongqing ZhangMaocheng WangZixuan WangYuhang LiuShuwen XiongGuishen Wang
Published in: International journal of molecular sciences (2023)
Regulators in gene regulatory networks (GRNs) are crucial for identifying cell states. However, GRN inference based on scRNA-seq data has several problems, including high dimensionality and sparsity, and requires more label data. Therefore, we propose a meta-learning GRN inference framework to identify regulatory factors. Specifically, meta-learning solves the parameter optimization problem caused by high-dimensional sparse data features. In addition, a few-shot solution was used to solve the problem of lack of label data. A structural equation model (SEM) was embedded in the model to identify important regulators. We integrated the parameter optimization strategy into the bi-level optimization to extract the feature consistent with GRN reasoning. This unique design makes our model robust to small-scale data. By studying the GRN inference task, we confirmed that the selected regulators were closely related to gene expression specificity. We further analyzed the GRN inferred to find the important regulators in cell type identification. Extensive experimental results showed that our model effectively captured the regulator in single-cell GRN inference. Finally, the visualization results verified the importance of the selected regulators for cell type recognition.
Keyphrases
  • single cell
  • rna seq
  • electronic health record
  • transcription factor
  • gene expression
  • big data
  • mental health
  • machine learning
  • deep learning
  • data analysis
  • cell therapy
  • anti inflammatory