Login / Signup

Mechanisms of Atmospherically Relevant Cluster Growth.

Bryan R BzdekJoseph W DePalmaMurray V Johnston
Published in: Accounts of chemical research (2017)
Atmospheric aerosols impact global climate either directly by scattering solar radiation or indirectly by serving as cloud condensation nuclei, which influence cloud albedo and precipitation patterns. Our scientific understanding of these impacts is poor relative to that of, for instance, greenhouse gases, in part because it is difficult to predict particle number concentrations. One important pathway by which particles are added to the atmosphere is new particle formation, where gas phase precursors form molecular clusters that subsequently grow to the climatically relevant size range (50-100 nm diameter). It is predicted that up to 50% of atmospheric particles arise from this process, but the key initial chemical processes are poorly resolved. In general, a combination of inorganic and organic molecules are thought to contribute to new particle formation, but the chemical composition of molecular clusters and pathways by which they grow to larger sizes is unclear. Cluster growth is a key component of new particle formation, as it governs whether molecular clusters will become climatically relevant. This Account discusses our recent work to understand the mechanisms underlying new particle growth. Atmospherically relevant molecular clusters containing the likely key contributors to new particle formation (sulfuric acid, ammonia, amines, and water) were investigated experimentally by Fourier transform mass spectrometry as well as computationally by density functional theory. Our laboratory experiments investigated the molecular composition of charged clusters, the molecular pathways by which these clusters may grow, and the kinetics of base incorporation into them. Computational chemistry allowed confirmation and rationalization of the experimental results for charged clusters and extension of these principles to uncharged and hydrated clusters that are difficult to study by mass spectrometry. This combination of approaches enabled us to establish a framework for cluster growth involving sulfuric acid, ammonia, amines, and water. Charged or uncharged, cluster growth occurs primarily through an ammonium (or aminium) bisulfate coordinate. In these clusters, proton transfer is maximized between acids and bases to produce cations (ammonium, aminium) and anions (bisulfate), whereas additional molecules (water and unneutralized sulfuric acid) remain un-ionized. Experimental measurements suggest the growth of positively charged clusters occurs by successive acidification and neutralization steps. The acidification step is nearly barrierless, whereas the neutralization step exhibits a significant activation barrier in the case of ammonia. Bases are also incorporated into these clusters by displacement of one base for another. Base displacement is barrierless on the cluster surface but not within the cluster core. The favorability of amines relative to ammonia in charged clusters is governed by the trade-off between gas phase basicity and binding energetics. Computational studies indicate that water has a relatively small effect on cluster energetics. In short, amines are effective at assisting the formation and initial growth of clusters but become less important as cluster size increases, especially when hydration is considered. More generally, this work shows how experiment and computation can provide important, complementary information to address problems of environmental interest.
Keyphrases