Smooth ROC curve estimation via Bernstein polynomials.
Dongliang WangXueya CaiPublished in: PloS one (2021)
The receiver operating characteristic (ROC) curve is commonly used to evaluate the accuracy of a diagnostic test for classifying observations into two groups. We propose two novel tuning parameters for estimating the ROC curve via Bernstein polynomial smoothing of the empirical ROC curve. The new estimator is very easy to implement with the naturally selected tuning parameter, as illustrated by analyzing both real and simulated data sets. Empirical performance is investigated through extensive simulation studies with a variety of scenarios where the two groups are both from a single family of distributions (symmetric or right skewed) or one from a symmetric and the other from a right skewed distribution. The new estimator is uniformly more efficient than the empirical ROC estimator, and very competitive to eleven other existing smooth ROC estimators in terms of mean integrated square errors.