Impact of Compression on the Textural and Structural Properties of CPO-27(Ni).
Gabriel Trierweiler GonçalvesLaure MichelinLudovic JosienJean-Louis PaillaudGérald ChaplaisPublished in: Molecules (Basel, Switzerland) (2023)
The employment of metal-organic frameworks in powder form is undesirable from an industrial perspective due to process and safety issues. This work is devoted to evaluating the impact of compression on the textural and structural properties of CPO-27(Ni). For this purpose, CPO-27(Ni) was synthesized under hydrosolvothermal conditions and characterized. Then, the resulting powder was compressed into binderless pellets using variable compression forces ranging from 5-90 kN (37-678 MPa) and characterized by means of nitrogen adsorption/desorption, thermogravimetric analysis and powder X-ray diffraction to evaluate textural, thermal and structural changes. Both textural and structural properties decreased with increasing compression force. Thermal stability was impacted in pellets compressed at forces over 70 kN. CPO-27(Ni) pelletized at 5, 8 and 10 kN, and retained more than 94% of its initial textural properties, while a loss of about one-third of the textural property was observed for the two most compressed samples (70 and 90 kN) compared to the starting powder.