LC-MS/MS Based Volatile Organic Compound Biomarkers Analysis for Early Detection of Lung Cancer.
Shuaibu Nazifi SaniWei ZhouBalarabe B IsmailYongkui ZhangZhijun ChenBinjie ZhangChangqian BaoHoude ZhangXiaozhi WangPublished in: Cancers (2023)
(1) Background: lung cancer is the world's deadliest cancer, but early diagnosis helps to improve the cure rate and thus reduce the mortality rate. Annual low-dose computed tomography (LD-CT) screening is an efficient lung cancer-screening program for a high-risk population. However, LD-CT has often been characterized by a higher degree of false-positive results. To meet these challenges, a volatolomic approach, in particular, the breath volatile organic compounds (VOCs) fingerprint analysis, has recently received increased attention for its application in early lung cancer screening thanks to its convenience, non-invasiveness, and being well tolerated by patients. (2) Methods: a LC-MS/MS-based volatolomics analysis was carried out according to P/N 5046800 standard based breath analysis of VOC as novel cancer biomarkers for distinguishing early-stage lung cancer from the healthy control group. The discriminatory accuracy of identified VOCs was assessed using subject work characterization and a random forest risk prediction model. (3) Results: the proposed technique has good performance compared with existing approaches, the differences between the exhaled VOCs of the early lung cancer patients before operation, three to seven days after the operation, as well as four to six weeks after operation under fasting and 1 h after the meal were compared with the healthy controls. The results showed that only 1 h after a meal, the concentration of seven VOCs, including 3-hydroxy-2-butanone (TG-4), glycolaldehyde (TG-7), 2-pentanone (TG-8), acrolein (TG-11), nonaldehyde (TG-19), decanal (TG-20), and crotonaldehyde (TG-22), differ significantly between lung cancer patients and control, with the invasive adenocarcinoma of the lung (IAC) having the most significant difference. (4) Conclusions: this novel, non-invasive approach can improve the detection rate of early lung cancer, and LC-MS/MS-based breath analysis could be a promising method for clinical application.
Keyphrases
- computed tomography
- low dose
- early stage
- positron emission tomography
- blood pressure
- radiation therapy
- papillary thyroid
- metabolic syndrome
- ejection fraction
- chronic kidney disease
- newly diagnosed
- climate change
- risk factors
- high resolution
- preterm birth
- coronary artery disease
- gestational age
- pet ct
- tandem mass spectrometry