Login / Signup

The Collaborative Seismic Earth Model: Generation 1.

Andreas FichtnerDirk-Philip van HerwaardenMichael AfanasievSaulė SimutėLion KrischerYeşim Çubuk-SabuncuTuncay TaymazLorenzo ColliErdinc SayginAntonio VillaseñorJeannot TrampertPaul CupillardHans-Peter BungeHeiner Igel
Published in: Geophysical research letters (2018)
We present a general concept for evolutionary, collaborative, multiscale inversion of geophysical data, specifically applied to the construction of a first-generation Collaborative Seismic Earth Model. This is intended to address the limited resources of individual researchers and the often limited use of previously accumulated knowledge. Model evolution rests on a Bayesian updating scheme, simplified into a deterministic method that honors today's computational restrictions. The scheme is able to harness distributed human and computing power. It furthermore handles conflicting updates, as well as variable parameterizations of different model refinements or different inversion techniques. The first-generation Collaborative Seismic Earth Model comprises 12 refinements from full seismic waveform inversion, ranging from regional crustal- to continental-scale models. A global full-waveform inversion ensures that regional refinements translate into whole-Earth structure.
Keyphrases
  • quality improvement
  • endothelial cells
  • contrast enhanced
  • gene expression
  • magnetic resonance
  • computed tomography
  • machine learning
  • genome wide
  • electronic health record
  • deep learning
  • big data
  • high density