Login / Signup

Microparticle Impact Testing at High Precision, Higher Temperatures, and with Lithographically Patterned Projectiles.

Alain ReiserChristopher A Schuh
Published in: Small methods (2022)
In the first decade of high-velocity microparticle impact research, hardly any modification of the original experimental setup has been necessary. However, future avenues for the field require advancements of the experimental method to expand both the impact variables that can be quantitatively assessed and the materials and phenomena that can be studied. This work explores new design concepts for the launch pad (the assembly that launches microparticles upon laser ablation) that can address the root causes of many experimental challenges that may limit the technique in the future. Among the design changes contemplated, the substitution of a stiff glass launch layer for the standard elastomeric polymer layer offers a number of improvements. First, it facilitates a reduction of the gap between launch pad and target from hundreds to tens of micrometers and thus unlocks a reproducibility in targeting a specific impact location better than the diameter of the test particle itself (±1.75 µm for SiO 2 particles 7.38 µm in diameter). Second, the inert glass surface enables experiments at higher temperatures than previously possible. Finally-as demonstrated by the launch of thin-film Au disks-a launch pad made of materials standard in microfabrication paves the way to facile microfabrication of advanced impactors.
Keyphrases
  • current status
  • reduced graphene oxide
  • cancer therapy
  • blood flow
  • quantum dots
  • sensitive detection
  • radiofrequency ablation