Login / Signup

Spontaneous Isomerization of a Hydroxynaphthalene-Containing Spiropyran in Polar Solvents Enhanced by Hydrogen Bonding Interactions.

Yasuhiro ShiraishiShunsuke TakagiKeiichiro YomoTakayuki Hirai
Published in: ACS omega (2021)
The synthesis of spiropyran dyes exhibiting solvent-driven isomerization even in the dark condition is an important subject for the design of optical materials. A conventional synthesis strategy involves the conjugation of indoline moieties with electron-deficient aromatic moieties. Herein, we report that a spiropyran conjugated with a hydroxynaphthalene moiety ( 1 ) is a new member exhibiting solvent-driven isomerization, even bearing an electron-donating -OH moiety. The dye exists as a colorless spirocyclic (SP) form in nonpolar media. It, however, shows a blue color in polar media, especially in aqueous media, due to the formation of ring-opened merocyanine (MC) forms, where the isomerization terminates in 10 s even at room temperature. The spontaneous SP → MC isomerization originates from the MC forms stabilized by the highly delocalized π-electrons on the hydroxynaphthalene moiety. The solvation in polar media and the hydrogen bonding interaction with water molecules decrease the ground-state energy of the MC forms, triggering spontaneous isomerization. The dye exhibits two MC absorption bands assigned to the trans-trans-cis (TTC) and cis-trans-cis (CTC) isomers. The absorbance of the CTC band increases more significantly with an increase in the water content, and the increase exhibits a linear relationship with a hydrogen-bond donor acidity of solvents. The phenolate oxygen of the CTC form has larger hydrogen-bond acceptor basicity, resulting in stronger stabilization by the water molecule.
Keyphrases
  • ionic liquid
  • room temperature
  • solar cells
  • circulating tumor
  • high resolution
  • highly efficient
  • electron transfer
  • molecular dynamics simulations
  • light emitting