Composite Proton-Exchange Membrane with Highly Improved Proton Conductivity Prepared by in Situ Crystallization of Porous Organic Cage.
Ruiyi HanPeiyi WuPublished in: ACS applied materials & interfaces (2018)
Porous organic cage, a kind of newly emerging soluble crystalline porous material, is introduced to proton-exchange membrane by in situ crystallization. The crystallized Cage 3 with intrinsic water-meditated three-dimensional interconnected proton pathways working together with Nafion matrix generates a composite membrane with highly improved proton conductivity. Different from inorganic crystalline porous materials, like metal-organic frameworks, the organic porous material shows better compatibility with Nafion matrix due to the absence of inorganic elements. In addition, Cage 3 can absorb water up to 20.1 wt %, which effectively facilitates proton conduction under both high- and low-humidity conditions. Meanwhile, the selectivity of Nafion-Cage 3 composite membrane is also elevated upon the loading of Cage 3. The proton conductivity is evidently enhanced without obvious increased methanol permeability. At 90 °C and 95% RH, the proton conductivity of NC3-5 reaches 0.27 S·cm-1, highly improved compared to 0.08 S·cm-1 of recast Nafion under the same condition. This study offers a new strategy for modifying proton-exchange membrane with crystalline porous materials.