Visualization of Solvent Effect and Oxygen Content via a Red Room-Temperature Phosphorescent Material.
Lisha ZhangFan GuPing JiangXiang MaPublished in: ACS applied materials & interfaces (2024)
The development of pure organic room-temperature phosphorescent (RTP) materials greatly facilitates the integrated application of luminescent materials. Herein, a type of photoactivated red RTP material was constructed by simply doping 4-(benzo[ c ][1,2,5]thiadiazol-5-ylthio)benzonitrile (p-NNS) into a poly(methyl methacrylate) (PMMA) matrix. The obtained film realized a controllable photoactivation process by regulation of diverse solvent levels, demonstrating potential advantages in optical anti-counterfeiting applications. Furthermore, luminescent properties of the doped film were utilized to detect oxygen content from 2.00% to 4.90%, which revealed the exact consumption of ambient oxygen under UV light. Every CIE point of the luminescence corresponds to a certain oxygen content, illustrating the visualization of oxygen content. The remarkable regulation of solvent effect and oxygen content in this work will provide competitive material for further optical applications.