A Photochemically Generated Selenyl Free Radical Observed by High Energy Resolution Fluorescence Detected X-ray Absorption Spectroscopy.
Susan NehzatiNatalia V DolgovaDimosthenis SokarasThomas KrollJulien J H CotelesageIngrid J PickeringGraham N GeorgePublished in: Inorganic chemistry (2018)
Selenium-based selenyl free radicals are chemical entities that may be involved in a range of biochemical processes. We report the first X-ray spectroscopic observation of a selenyl radical species generated photochemically by X-ray irradiation of low-temperature solutions of l-selenocysteine. We have employed high energy resolution fluorescence detected X-ray absorption spectroscopy (HERFD-XAS) and electron paramagnetic resonance (EPR) spectroscopy, coupled with density functional theory calculations, to characterize and understand the species. The HERFD-XAS spectrum of the selenyl radical is distinguished by a uniquely low-energy transition with a peak energy at 12 659.0 eV, which corresponds to a 1s → 4p transition to the singly occupied molecular orbital of the free radical. The EPR spectrum shows the broad features and highly anisotropic g-values that are expected for a selenium free radical species. The availability of spectroscopic probes for selenyl radicals may assist in understanding why life chooses selenium over sulfur in selected biochemical processes.