Login / Signup

Camel Milk Mitigates Cyclosporine-Induced Renal Damage in Rats: Targeting p38/ERK/JNK MAPKs, NF-κB, and Matrix Metalloproteinases.

Hany H ArabAhmed M AshourAbdulmalik M AlqarniEl-Shaimaa A ArafaAhmed M Kabel
Published in: Biology (2021)
Renal damage is a devastating adverse effect for cyclosporine; a widely used immunosuppressant drug. The present work examined the potential of camel milk, a natural agent with marked anti-inflammatory/antioxidant properties, to attenuate cyclosporine-induced renal injury. The kidney tissue was examined with the aid of Western blotting, immunohistochemistry, biochemical assays, including colorimetric and ELISA kits. The present findings revealed that camel milk (10 mL/kg/day; for 3 weeks by gavage) significantly lowered serum creatinine, BUN, and KIM-1 renal dysfunction markers. Mechanistically, camel milk inhibited renal inflammation, as seen by significant decrease of the pro-inflammatory cytokines (MCP-1, TNF-α, IL-1β, and IL-18) and extracellular degradation signals (MMP-2 and MMP-9) and enhanced the generation of the anti-inflammatory IL-10. Moreover, it inhibited the upstream pro-inflammatory p38/ERK/JNK MAPK pathway by lowering the phosphorylation of the 3 subfamilies of MAPKs (p38 MAPK, JNK1/2, and ERK1/2). Furthermore, camel milk curbed the NF-κB pathway activation by downregulating the protein expression of activated NF-κBp65, p-NF-κBp65, and p-IκBα proteins. Additionally, camel milk inhibited renal oxidative stress by lowering the MPO activity and augmenting the reduced/oxidized glutathione ratio and total antioxidant capacity. These findings propose that camel milk may be a promising agent that inhibits cyclosporine-triggered renal inflammation via curtailing the p38/ERK/JNK MAPK and NF-κB pathways, matrix metalloproteinases, and pro-inflammatory cytokines.
Keyphrases