Login / Signup

Leaf Variegation of Thylakoid Formation1 Is Suppressed by Mutations of Specific σ-Factors in Arabidopsis.

Fenhong HuYing ZhuWenjuan WuYe XieJirong Huang
Published in: Plant physiology (2015)
Thylakoid Formation1 (THF1) has been shown to play roles in chloroplast development, resistance to excessive light, and chlorophyll degradation in Arabidopsis (Arabidopsis thaliana). To elucidate mechanisms underlying THF1-regulated chloroplast development, we mutagenized thf1 seeds with ethyl methanesulfonate and screened second-site recessive mutations that suppress its leaf variegation phenotype. Here, we characterized a unique suppressor line, 42-6, which displays a leaf virescent phenotype. Map-based cloning and genetic complementation results showed that thf1 variegation was suppressed by a mutation in σ-FACTOR6 (SIG6), which is a plastid transcription factor specifically controlling gene expression through the plastid-encoded RNA polymerase. Northern-blot analysis revealed that plastid gene expression was down-regulated in not only 42-6 and sig6 but also, thf1 at the early stage of chloroplast development. Interestingly, mutations in SIG2 but not in other σ-factors also suppressed thf1 leaf variegation. Furthermore, we found that leaf variegation of thf1 and var2 could be suppressed by several virescent mutations, including yellow seedling1, brz-insensitive-pale green2, and nitric oxide-associated protein1, indicating that virescent mutations suppress leaf variegation. Taken together, our results provide unique insights into thf1-mediated leaf variegation, which might be triggered by defects in plastid gene transcription.
Keyphrases