Fast and Accurate Surrogate Virus Neutralization Test Based on Antibody-Mediated Blocking of the Interaction of ACE2 and SARS-CoV-2 Spike Protein RBD.
Denis E KolesovMaria V SinegubovaLutsia K DayanovaInna V DolzhikovaIvan Ivanovich VorobievNadezhda A OrlovaPublished in: Diagnostics (Basel, Switzerland) (2022)
The humoral response to the SARS-CoV-2 S protein determines the development of protective immunity against this infection. The standard neutralizing antibodies detection method is a live virus neutralization test. It can be replaced with an ELISA-based surrogate virus neutralization test (sVNT), measuring the ability of serum antibodies to inhibit complex formation between the receptor-binding domain (RBD) of the S protein and the cellular ACE2 receptor. There are conflicting research data on the sVNT methodology and the reliability of its results. We show that the performance of sVNT dramatically improves when the intact RBD from the Wuhan-Hu-1 virus variant is used as the plate coating reagent, and the HRP-conjugated soluble ACE2 is used as the detection reagent. This design omits the pre-incubation step in separate tubes or separate microplate and allows the simple quantification of the results using the linear regression, utilizing only 3-4 test sample dilutions. When this sVNT was performed for 73 convalescent plasma samples, its results showed a very strong correlation with VNT (Spearman's Rho 0.83). For the RBD, bearing three amino acid substitutions and corresponding to the SARS-CoV-2 beta variant, the inhibitory strength was diminished for 18 out of 20 randomly chosen serum samples, and the magnitude of this decrease was not similar to the change in overall anti-RBD IgG level. The sVNT assay design with the ACE2-HRP is preferable over the assay with the RBD-HRP reagent and is suitable for mass screening of neutralizing antibodies titers.
Keyphrases
- sars cov
- amino acid
- angiotensin converting enzyme
- angiotensin ii
- binding protein
- respiratory syndrome coronavirus
- protein protein
- immune response
- coronavirus disease
- dengue virus
- photodynamic therapy
- high resolution
- loop mediated isothermal amplification
- label free
- big data
- artificial intelligence
- disease virus
- machine learning