Login / Signup

Spatial segregation between wild ungulates and livestock outside protected areas in the lowlands of Nepal.

Shivish BhandariRamiro D CregoJared A Stabach
Published in: PloS one (2022)
Understanding how wildlife interacts with human activities across non-protected areas are critical for conservation. This is especially true for ungulates that inhabit human-dominated landscapes outside the protected area system in Nepal, where wildlife often coexists with livestock. Here we investigated how elevation, agricultural land, distance from roads, and the relative abundance of livestock (goats, sheep, cow and buffalo) influenced wild ungulate chital (Axis axis), nilgai (Boselaphustrago camelus), wild boar (Sus scrofa) and sambar (Rusa unicolor) abundance and occurrence. We counted all individuals of wild ungulates and livestock along 35 transects conducted between November 2017 and March 2018 in community forests of Bara and Rautahat distracts in the lowlands of Nepal. We assessed abundance and occurrence relation to covariates using Generalized Linear Models. We found that livestock outnumbered wild ungulates 6.6 to 1. Wild boar was the most abundant wild ungulate, followed by nilgai, chital, and sambar. Elevation and livestock abundance were the most important covariates affecting the overall abundance of wild ungulates and the distribution of each individual ungulate species. Our results suggest spatial segregation between wild ungulates, which occur mainly on high grounds (> 300 m.a.s.l.), and livestock that concentrate across low ground habitats (< 300 m.a.s.l.). Our results provide a critical first step to inform conservation in community forest areas of Nepal, where wildlife interacts with people and their livestock. Finding better strategies to allow the coexistence of ungulates with people and their livestock is imperative if they are to persist into the future.
Keyphrases
  • genetic diversity
  • climate change
  • antibiotic resistance genes
  • endothelial cells
  • risk assessment
  • mental health
  • microbial community
  • mass spectrometry
  • wastewater treatment
  • single molecule