Login / Signup

Ginkgo biloba Golden Leaf Extract (GGLE) Inhibits Melanoma Cell Invasion and Angiogenesis Through Inhibition of Angiogenin.

Ping ChenTao WangQi Chen
Published in: Integrative cancer therapies (2023)
The popular dietary supplements of Ginkgo biloba (Ginkgo) products have been reported to have anti-cancer activities in multiple cellular and animal studies, with the benefits yet to be proven with clinical trials. The mechanisms of action are not clear, forming a barrier to investigation in Gingko-specific benefits to cancer patients, especially when combined with other therapies. Here we reported on the discovery of a novel mechanism by which a Ginkgo golden leaf extract (GGLE) inhibited melanoma cell invasion and angiogenesis. GGLE did not inhibit melanoma cells via direct cytotoxicity. Instead, GGLE significantly inhibited total RNase activities in melanoma cells under both normoxia and hypoxia conditions. The RNase angiogenin was induced twofolds by hypoxia, and the induction was significantly suppressed by GGLE treatment in a dose dependent manner. As a result of angiogenin inhibition, GGLE inhibited melanoma cell migration and invasion in a dose dependent manner. Conditioned media from melanoma cell culture sufficiently induced in vitro angiogenesis in human endothelial cells, whereas the conditioned media of GGLE-treated melanoma cells significantly inhibited this angiogenetic activity. This was accompanied with markedly reduced angiogenin concentrations in the GGLE-treated melanoma cell conditioned media. We concluded that, instead of direct cytotoxicity, GGLE inhibited angiogenin synthesis and secretion by melanoma cells, resulting in inhibition of tumor cell invasion and tumor-induced angiogenesis. This new mechanism opens the door for investigation in GGLE influencing tumor microenvironment, and warrants further investigation and validation in vivo.
Keyphrases
  • endothelial cells
  • high glucose
  • vascular endothelial growth factor
  • clinical trial
  • skin cancer
  • diabetic rats
  • single cell
  • drug induced
  • cell therapy
  • open label
  • bone marrow
  • phase ii