Skipping the Boundary Layer: High-Speed Droplet-Based Immunoassay Using Rayleigh Acoustic Streaming.
Qi WangZhe DingGary WongJia ZhouAntoine RiaudPublished in: Analytical chemistry (2023)
Acoustic mixing of droplets is a promising way to implement biosensors that combine high speed and minimal reagent consumption. To date, this type of droplet mixing is driven by a volume force resulting from the absorption of high-frequency acoustic waves in the bulk of the fluid. Here, we show that the speed of these sensors is limited by the slow advection of analyte to the sensor surface due to the formation of a hydrodynamic boundary layer. We eliminate this hydrodynamic boundary layer by using much lower ultrasonic frequencies to excite the droplet, which drives a Rayleigh streaming that behaves essentially like a slip velocity. At equal average flow velocity in the droplet, both experiment and three-dimensional simulations show that this provides a three-fold speedup compared to Eckart streaming. Experimentally, we further shorten a SARS-CoV-2 antibody immunoassay from 20 min to 40 s taking advantage of Rayleigh acoustic streaming.