Characterizing Protonation-Coupled Conformational Ensembles in RNA via pH-Differential Mutational Profiling with DMS Probing.
Edgar M FaisonAmrita NallathambiQi ZhangPublished in: Journal of the American Chemical Society (2023)
RNA molecules undergo conformational transitions in response to cellular and environmental stimuli. Site-specific protonation, a fundamental chemical property, can alter the conformational landscape of RNA to regulate their functions. However, characterizing protonation-coupled RNA conformational ensembles on a large scale remains challenging. Here, we present pH-differential mutational profiling (PD-MaP) with dimethyl sulfate probing for high-throughput detection of protonation-coupled conformational ensembles in RNA. We demonstrated this approach on microRNA-21 precursor (pre-miR-21) and recapitulated a previously discovered A + -G-coupled conformational ensemble. Additionally, we identified a secondary protonation event involving an A + -C mismatch. We validated the occurrence of both protonation-coupled ensembles in pre-miR-21 using NMR relaxation dispersion spectroscopy. Furthermore, the application of PD-MaP on a library of well-annotated human primary microRNAs uncovered widespread protonation-coupled conformational ensembles, suggesting their potentially broad functions in biology.