Login / Signup

Wolf-Lamb-type Catalysis in One Pot Using Electrospun Polymeric Catalyst Membranes.

Martin O PretscherStephan GekleSeema Agarwal
Published in: Macromolecular rapid communications (2019)
Multistep catalytic transformations using incompatible catalysts (Wolf-Lamb-type) in a one-pot reaction cascade require site isolation of different catalysts by compartmentalization. In this work, the use of different electrospun catalytic membranes in a modular way as individual compartments is shown for one-pot Wolf-Lamb-type reaction cascades. The data are presented for one-pot cascade reaction sequences catalyzed by acidic and basic membranes made by electrospinning polymeric acid (poly(styrene-co-styrene sulfonic acid-co-4-methacryloyl-oxybenzophen)) and basic (poly(styrene-co-4-vinylpyridine-co-4-methacryloyl-oxybenzophen)) catalysts, respectively. The two-step, one-pot system used is the acidic catalyzed deacetylation of dimethoxybenzylacetale to benzaldehyde, which reacts with ethyl cyanoformate to result in a high yield of product (over 90%) under base-catalyzed conditions. The reaction kinetics are further monitored and evaluated by using differential equations, showing the necessity of a parameter Δt to represent a retarded start for the second reaction step. The concept provides an easy and upscalable approach for use in Wolf-Lamb-type systems.
Keyphrases
  • room temperature
  • highly efficient
  • ionic liquid
  • drug delivery
  • metal organic framework
  • gold nanoparticles
  • visible light