Login / Signup

Cotranslational Incorporation into Proteins of a Fluorophore Suitable for smFRET Studies.

Mayuri SadoineMichele CerminaraMichael GerritsJörg FitterAlexandros Katranidis
Published in: ACS synthetic biology (2018)
Single-molecule FRET (smFRET) is a powerful tool to investigate conformational changes of biological molecules. In general, smFRET studies require protein samples that are site-specifically double-labeled with a pair of donor and acceptor fluorophores. The common approaches to produce such samples cannot be applied when studying the synthesis and folding of the polypeptide chain on the ribosome. The best strategy is to incorporate two fluorescent amino acids cotranslationally using cell-free protein synthesis systems. Here, we demonstrate the cotranslational site-specific incorporation into a model protein of Atto633, a dye with excellent photophysical properties, suitable for single molecule spectroscopy, together with a second dye using a combination of the sense cysteine and the nonsense amber codon. In this work we show that cotranslational incorporation of good fluorophores into proteins is a viable strategy to produce suitable samples for smFRET studies.
Keyphrases
  • single molecule
  • living cells
  • cell free
  • amino acid
  • atomic force microscopy
  • case control
  • fluorescent probe
  • protein protein
  • binding protein
  • pet imaging
  • pet ct
  • aqueous solution
  • positron emission tomography