Login / Signup

Nanopore Is Preferable over Illumina for 16S Amplicon Sequencing of the Gut Microbiota When Species-Level Taxonomic Classification, Accurate Estimation of Richness, or Focus on Rare Taxa Is Required.

Márton SzoboszlayLaetitia SchrammDavid PinzautiJeanesse ScerriAnna SandionigiManuele Biazzo
Published in: Microorganisms (2023)
Nanopore sequencing is a promising technology used for 16S rRNA gene amplicon sequencing as it can provide full-length 16S reads and has a low up-front cost that allows research groups to set up their own sequencing workflows. To assess whether Nanopore with the improved error rate of the Kit 12 chemistry should be adopted as the preferred sequencing technology instead of Illumina for 16S amplicon sequencing of the gut microbiota, we used a mock community and human faecal samples to compare diversity, richness, and species-level community structure, as well as the replicability of the results. Nanopore had less noise, better accuracy with the mock community, a higher proportion of reads from the faecal samples classified to species, and better replicability. The difference between the Nanopore and Illumina results of the faecal bacterial community structure was significant but small compared to the variation between samples. The results show that Nanopore is a better choice for 16S rRNA gene amplicon sequencing when the focus is on species-level taxonomic resolution, the investigation of rare taxa, or an accurate estimation of richness. Illumina 16S sequencing should be reserved for communities with many unknown species, and for studies that require the resolution of amplicon sequence variants.
Keyphrases
  • single molecule
  • single cell
  • healthcare
  • mental health
  • endothelial cells
  • genome wide
  • mass spectrometry
  • transcription factor
  • machine learning
  • air pollution
  • deep learning
  • decision making