Enabling Long-Lived Polymeric Room Temperature Phosphorescence Material in Abominable Solvent.
Qian ZhouChen LiYongkang WangQingao ChenJiayue HuangYin ZhuQiankun LiChaolong YangPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2023)
Long-lived polymeric room temperature phosphorescence (RTP) materials have drawn more attention due to their convenient preparation process and equally efficient phosphorescence performance in recent years. As the polymer matrix is sensitive to air and humidity, some non-covalent interactions in the matrix are easily decomposed in water or air, which means that it is difficult for this material to be stored stably for a long time in the atmospheric environment or under harsh conditions. In this work, polymer powder mBPipQ contains aromatic and piperidine rings that are designed and synthesized successfully. Then the polymer is uniformly dispersed into epoxy resin matrix to form long-lived polymeric RTP material with efficient afterglow properties. The stiff backbone structure of mBPip and dense molecular arrangement of epoxy resin provide a rigid environment to stabilize triplet excitons, the RTP performance is greatly enhanced. The lifetime of mBPipQ in epoxy resin is 2 times higher than that of small molecule chromophore in that one. Interestingly, after soaking in strong acid or alkali solution for 10 days, the material can still emit stable and efficient long-lived phosphorescence. It is thanks to the hard matrix after full curing, which can provide a protective layer to prevent external quenchers from interfering with phosphorescence emission. Utilizing the efficient phosphorescence emission and excellent abominable-solvent resistance of this RTP material, multilevel information encryption has been successfully demonstrated. This work broadens the application scope of polymeric RTP materials in harsh environments and provides a new idea for achieving efficient RTP emission.