Microbial reduction of Cr(VI) in the presence of Ni, Cu and Zn by bacterial consortium enriched from an electroplating contaminated site.
Wen-Jing GongXing-Run WangHe-Ping ZhaoPublished in: Biodegradation (2021)
The bioremediation of Cr(VI) has been intensively reported in recent years, while little information about Cr(VI)-reducing consortium enriched from in-situ contaminated soil has been revealed, specifically the functional genes involved. In this study, we verified a Cr(VI) reduction process by a consortium enriched from in-situ contaminated soil through enzymatic analysis. The chromate reductase gene ChrR has been successfully amplified and further analyzed, provided solid evidence to prove the Cr(VI) bio-reduction was an enzyme-mediated process. Meanwhile, the analysis of metabolic pathways demonstrates that the consortium could detoxicate and resist Cr(VI) and co-existing metals (Ni2+, Zn2+ and Cu2+) through membrane transport and DNA repair process. The co-existing heavy metals Zn and Cu had a relatively significant negative and positive effects on Cr(VI) reduction respectively, which may play important roles in the Cr(VI) contaminated soil bioremediation.