Login / Signup

Digestive Tract Morphology and Gut Microbiota Jointly Determine an Efficient Digestive Strategy in Subterranean Rodents: Plateau Zokor.

Shou-Dong ZhangGong-Hua LinJi-Ru HanYu-Wei LinFeng-Qing WangDe-Chen LuJiu-Xiang XieJin-Xin Zhao
Published in: Animals : an open access journal from MDPI (2022)
Rodents' lifestyles vary in different environments, and to adapt to various lifestyles specific digestion strategies have been developed. Among these strategies, the morphology of the digestive tracts and the gut microbiota are considered to play the most important roles in such adaptations. However, how subterranean rodents adapt to extreme environments through regulating gut microbial diversity and morphology of the digestive tract has yet to be fully studied. Here, we conducted the comparisons of the gastrointestinal morphology, food intake, food assimilation, food digestibility and gut microbiota of plateau zokor Eospalax baileyi in Qinghai-Tibet Plateau and laboratory rats Rattus norvegicus to further understand the survival strategy in a typical subterranean rodent species endemic to the Qinghai-Tibet Plateau. Our results revealed that plateau zokor evolved an efficient foraging strategy with low food intake, high food digestibility, and ultimately achieved a similar amount of food assimilation to laboratory rats. The length and weight of the digestive tract of the plateau zokor was significantly higher than the laboratory rat. Particularly, the weight and length of the large intestine and cecum in plateau zokor is three times greater than that of the laboratory rat. Microbiome analysis showed that genus (i.e., Prevotella , Oscillospira , CF231, Ruminococcus and Bacteroides ), which are usually associated with cellulose degradation, were significantly enriched in laboratory rats, compared to plateau zokor. However, prediction of metagenomic function revealed that both plateau zokor and laboratory rats shared the same functions in carbohydrate metabolism and energy metabolism. The higher digestibility of crude fiber in plateau zokor was mainly driven by the sizes of cecum and cecum tract, as well as those gut microbiota which associated with cellulose degradation. Altogether, our results highlight that both gut microbiota and the morphology of the digestive tract are vital to the digestion in wild rodents.
Keyphrases
  • body mass index
  • oxidative stress
  • physical activity
  • ionic liquid
  • anaerobic digestion