The Role of Coordination Environment and pH in Tuning the Oxidation Rate of Europium(II).
Levi A EkangerLina A BasalMatthew J AllenPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2016)
The EuII/III redox couple offers metal-based oxidation-sensing with magnetic resonance imaging making the study of EuII oxidation chemistry important in the design of new probes. Accordingly, we explored oxidation reactions with a set of EuII -containing complexes. Superoxide formation from the reaction between EuII and dioxygen was observed using electron paramagnetic resonance spectroscopy. Additionally, oxidation kinetics of three EuII -containing complexes with bromate and glutathione disulfide at pH values, including 5 and 7, is reported. In the reaction with bromate, the oxidation rate of two of the complexes increased by 7.3 and 6.7 times upon decreasing pH from 7 to 5, but the rate increased by 17 times for a complex containing amide functional groups over the same pH range. The oxidation rate of a fluorobenzo-functionalized cryptate was relatively slow, indicating that the ligand used to impart thermodynamic oxidative stability might also be useful for controlling oxidation kinetics.