Login / Signup

Ca 2+ -dependent phosphorylation of NRAMP1 by CPK21 and CPK23 facilitates manganese uptake and homeostasis in Arabidopsis .

Dali FuZhenqian ZhangLukas WallradZhangqing WangStefanie HöllerChuanFeng JuIna Schmitz-ThomPanpan HuangLei WangEdgar PeiterJörg KudlaCun Wang
Published in: Proceedings of the National Academy of Sciences of the United States of America (2022)
Homeostasis of the essential micronutrient manganese (Mn) is crucially determined through availability and uptake efficiency in all organisms. Mn deficiency of plants especially occurs in alkaline and calcareous soils, seriously restricting crop yield. However, the mechanisms underlying the sensing and signaling of Mn availability and conferring regulation of Mn uptake await elucidation. Here, we uncover that Mn depletion triggers spatiotemporally defined long-lasting Ca 2+ oscillations in Arabidopsis roots. These Ca 2+ signals initiate in individual cells, expand, and intensify intercellularly to transform into higher-order multicellular oscillations. Furthermore, through an interaction screen we identified the Ca 2+ -dependent protein kinases CPK21 and CPK23 as Ca 2+ signal-decoding components that bring about translation of these signals into regulation of uptake activity of the high-affinity Mn transporter natural resistance associated macrophage proteins 1 (NRAMP1). Accordingly, a cpk21 / 23 double mutant displays impaired growth and root development under Mn-limiting conditions, while kinase overexpression confers enhanced tolerance to low Mn supply to plants. In addition, we define Thr498 phosphorylation within NRAMP1 as a pivot mechanistically determining NRAMP1 activity, as revealed by biochemical assays and complementation of yeast Mn uptake and Arabidopsis nramp1 mutants. Collectively, these findings delineate the Ca 2+ -CPK21/23-NRAMP1 axis as key for mounting plant Mn homeostasis.
Keyphrases