Assessment of the stream invertebrate β -diversity along an elevation gradient using a bidimensional null model analysis.
Pablo TimonerPierre MarleEmmanuel CastellaAnthony LehmannPublished in: Ecology and evolution (2022)
β -Diversity, commonly defined as the compositional variation among localities that links local diversity ( α -diversity) and regional diversity ( γ -diversity), can arise from two different ecological phenomena, namely the spatial species turnover (i.e., species replacement) and the nestedness of assemblages (i.e., species loss). However, any assessment that does not account for stochasticity in community assembly could be biased and misinform conservation management. In this study, we aimed to provide a better understanding of the overall ecological phenomena underlying stream β -diversity along elevation gradients and to contribute to the rich debate on null model approaches to identify nonrandom patterns in the distribution of taxa. Based on presence-absence data of 78 stream invertebrate families from 309 sites located in the Swiss Alpine region, we analyzed the effect size of nonrandom spatial distribution of stream invertebrates on the β -diversity and its two components (i.e., turnover and nestedness). We used a modeling framework that allows exploring the complete range of existing algorithms used in null model analysis and assessing how distribution patterns vary according to an array of possible ecological assumptions. Overall, the turnover of stream invertebrates and the nestedness of assemblages were significantly lower and higher, respectively, than the ones expected by chance. This pattern increased with elevation, and the consistent trend observed along the altitudinal gradient, even in the most conservative analysis, strengthened our findings. Our study suggests that deterministic distribution of stream invertebrates in the Swiss Alpine region is significantly driven by differential dispersal capacity and environmental stress gradients. As long as the ecological assumptions for constructing the null models and their implications are acknowledged, we believe that they still represent useful tools to measure the effect size of nonrandom spatial distribution of taxa on β -diversity.