Login / Signup

The impact of obesity on the regulation of muscle blood flow during exercise in patients with heart failure with a preserved ejection fraction.

Stephen M RatchfordJoshua F LeeKanokwan BunsawatJeremy K AlpenglowJia ZhaoChristy L MaJohn J RyanLillian L KhorD Walter Wray
Published in: Journal of applied physiology (Bethesda, Md. : 1985) (2022)
Obesity is now considered a primary comorbidity in heart failure with preserved ejection fraction (HFpEF) pathophysiology, mediated largely by systemic inflammation. Although there is accumulating evidence for a disease-related dysregulation of blood flow during exercise in this patient group, the role of obesity in the hemodynamic response to exercise remains largely unknown. Small muscle mass handgrip (HG) exercise was used to evaluate exercising muscle blood flow in nonobese (BMI < 30 kg/m 2 , n = 14) and obese (BMI > 30 kg/m 2 , n = 40) patients with HFpEF. Heart rate (HR), stroke index (SI), cardiac index (CI), mean arterial pressure (MAP), forearm blood flow (FBF), and vascular conductance (FVC) were assessed during progressive intermittent HG exercise [15%-30%-45% maximal voluntary contraction (MVC)]. Blood biomarkers of inflammation [C-reactive protein (CRP) and interleukin-6 (IL-6)] were also determined. Exercising FBF was reduced in obese patients with HFpEF at all work rates (15%: 304 ± 42 vs. 229 ± 15 mL/min; 30%: 402 ± 46 vs. 300 ± 18 mL/min; 45%: 484 ± 55 vs. 380 ± 23 mL/min, nonobese vs. obese, P = 0.025), and was negatively correlated with BMI ( R = -0.47, P < 0.01). In contrast, no differences in central hemodynamics (HR, SI, CI, and MAP) were found between groups. Proinflammatory biomarkers were markedly elevated in patients with obesity (CRP: 2,133 ± 418 vs. 4,630 ± 590 ng/mL, P = 0.02; IL-6: 2.9 ± 0.3 vs. 5.2 ± 0.7 pg/mL, nonobese vs. obese, P = 0.04), and both biomarkers were positively correlated with BMI (CRP: R = 0.40, P = 0.03; IL-6: R = 0.57, P < 0.01). Together, these findings demonstrate the presence of obesity and an accompanying milieu of systemic inflammation as important factors in the dysregulation of exercising muscle blood flow in patients with HFpEF. NEW & NOTEWORTHY Obesity is the primary comorbid condition in HFpEF pathophysiology, but the role of adiposity on the peripheral circulation is not well understood. The present study identified a 30%-40% reduction in forearm blood flow during handgrip exercise, accompanied by a marked elevation in proinflammatory plasma biomarkers, in obese patients with HFpEF compared with their nonobese counterparts. These findings suggest an exaggerated dysregulation in exercising muscle blood flow associated with the obese HFpEF phenotype.
Keyphrases