Dynamics of HCN, HNC, and HNCO Formation in the 193 nm Photodissociation of Formamide.
Kacee L CasterNathan A SeifertBranko RuscicAhren W JasperKirill ProzumentPublished in: The journal of physical chemistry. A (2024)
Formamide (NH 2 CHO) is the simplest molecule containing a peptide linkage [-NH-C(═O)-], and it plays an essential role in the study of prebiotic chemistry. Exposure to UV irradiation allows formamide to decompose and act as a prebiotic feedstock in the formation of nucleobases and other necessary starting materials. The photodissociation mechanism of gaseous formamide at 193 nm is studied using (a) chirped-pulse Fourier transform millimeter-wave spectroscopy in the 260-290 GHz spectral region in a room-temperature flow-tube reactor at 1 μbar pressure, (b) a combination of electronic structure theory, transition state theory, and quasiclassical trajectories, and (c) the Active Thermochemical Tables. The HCN and HNC photoproducts of hydrogenated (NH 2 CHO) and deuterated (NH 2 CDO and ND 2 CHO) formamide precursors are examined to gain insight into the photodissociation mechanism. The theoretical investigation has characterized the main pathway leading to each of the HCN/HNC isomers from the precursor isotopologues. The theoretical branching ratio [HNC]/[HCN] = 2.1 for nascent photofragments agrees with the experiment. The effect of the postphotolysis HNC ↔ HCN isomerization on the [HNC]/[HCN] ratio is predicted. We report the experimental branching ratio [HNCO]: ([HNC] + [HCN]) = 12 ± 3 and propose that most of HNCO originates from dissociation on the S 1 electronic state of formamide.